Всё о ВИЭ

Карта солнца и ветра.


 

 

 

Возобновляемые энергетические ресурсы распределены по всей Земле относительно равномерно. Существует несколько направлений альтернативной энергетики, которые различаются по способу производства энергии и виду преобразовываемого альтернативного источника. Основные направления возобновляемой альтернативной энергетики: солнечная, геотермальная, ветроэнергетика и альтернативная гидроэнергетика, использующая водопады, волны и приливы в качестве источников энергии. Также существуют такие направления, как водородная и биоэнергетика.
Солнечная энергетика основывается на использовании солнечного света для получения любой энергии. Источник для солнечных станций неисчерпаем, а также использование энергии солнца для обеспечения жизнедеятельности не загрязняет окружающую среду. Недостатком использования данной энергии является высокая стоимость конструкций. Лидерами применения солнечной энергии для обеспечения жизнедеятельности являются Германия, Испания и Япония.
Использование энергии движения воздушных масс является основой ветроэнергетики. Данный способ получения энергии один из самых дешевых и экологически чистых. Можно привести пример Дании, где насчитывается уже около четырех тысяч ветроустановок, которые производят около 20% всей электроэнергии. Производство электроэнергии при помощи ветроустановок значительно дешевле аналогичных атомных, тепловых и угольных электростанций. Ветроэнергетика также значительно развита в Португалии(16%), Ирландии(14%) и Испании(13%).
Геотермальная энергетика базируется на использовании тепла земной коры как источника альтернативной энергии. Низкопотенциальная энергия Земли используется благодаря тепловым насосам. Источником данной энергии является поверхностный грунт, температура которого относительно низкая и постоянная круглый год. Поэтому данная энергия доступна на любой территории. Использование низкопотенциальной энергии земли наиболее распространено в США. А в Европе организация тепло- и холодоснабжения с помощью низкопотенциальной энергии Земли наиболее распространено в Швеции, Германии, Швейцарии и Австрии.
Использование энергии волны – основа работы волновых энергетических станций. Основные органы данных станций выполняются в виде поплавков, лопастей или маятников, которые под действием волны совершают механические колебания. А специальные электрогенераторы данную механическую энергию регенерируют в электрическую. Недостатком волновой электроэнергии сегодня является высокая ее стоимость, но по прогнозам специалистов, скоро возможно значительное ее снижение.
Учитывая то, что сегодня суммарная мощность производства энергии за счет возобновляемых источников составляет около 1% от общей выработки электроэнергии, а количество ископаемого топлива постоянно уменьшается, перспективы роста применения альтернативной энергетики в жизнеобеспечении очень высоки. Это связано также с тем, что применение альтернативных источников энергии не несет нагрузку на экологию и имеет низкую стоимость эксплуатации. По мнению Европейской комиссии, примерно к двадцатым годам в странах Европы в индустрии альтернативной энергетики возможно будет создано около 2.8 млн. рабочих мест, а вклад в ВВП данной индустрии будет около 1.1%.

 

 

Солнечные батареи. 


Преобразование солнечной энергии в электрическую и тепловую энергию происходит за счет солнечных батарей и коллекторов. Получение электроэнергии с помощью солнечных батарей не несет вредную нагрузку на окружающую среду, а само оборудование солнечных электростанций обходится без дорогостоящего обслуживания.
Солнечная батарея является источником электрического тока, который генерируется при воздействии солнечного излучения на фотоэлектрические преобразователи. В состав солнечных батарей не входят движущие части, поэтому они обладают высокой надежностью. Кроме этого во время практически неограниченного срока службы солнечных батарей отсутствуют какие-то крупные поломки, а их обслуживание заключается в удалении пыли с зеркал фотоэлементов. Солнечные батареи имеют низкий коэффициент полезного действия, но за счет модульного типа конструкций можно построить установки на различное напряжение и любую мощность, а применение современных аккумуляторов позволяет накапливать производимую электроэнергию, которая потом расходуется в ночное время суток или в ненастную погоду.
Области применения:

- частные дома;
- офисные и административные здания, учебные заведения, спортивные сооружения;
- промышленные предприятия;
- агропромышленный комплекс;
- малонаселенные жилые районы;
- мобильные потребители электроэнергии (мобильные госпитали, мобильные комплексы поисково-спасательных формирований, научные экспедиции, войсковые части при расположении в полевых условиях, пограничные заставы, кордоны егерей в заповедниках и др.);
- транспорт.

Для преобразования энергии солнечного излучения в электричество нужны фотоэлементы. Наиболее распространенные технологии производства фотоэлементов:

  1. Кристаллические фотоэлементы:
    1. Монокристаллические кремниевые фотоэлементы;
    2. Поликристаллические фотоэлементы;
  2. Тонкопленочные фотоэлементы:
    1. Фотоэлементы с использованием диселенида индия и меди (CIS технология);
    2. Фотоэлементы с использованием теллурида кадмия (CdTe технология);
    3. Фотоэлементы с использованием аморфного кремния;


 monokristallicheskij_pc

Производство монокристаллических фотоэлементов происходит с применением метода Чхоральского. Для того чтобы получить кремниевый монокристалл, в расплав кремния с бором погружают затравочный кристалл и постепенно поднимают на несколько метров над поверхностью раствора, при этом за затравочным кристаллом вытягивается кристаллизирующийся раствор. Из полученной монокристаллической заготовки срезают кромки для того чтобы получить квадратные элементы и разрезают его на элементы толщиной примерно 0,3мм. После этого элементы легируют фосфором для добавления n-проводимости и создания p-n перехода, полируют, наносят антиотражающее покрытие и токопродящие дорожки и мы получаем готовый к использованию монокристаллический фотоэлемент.

Характеристики:

  • КПД от 15 до 18 процентов;
  • Форма квадратная или квадратная со скругленными или срезанными углами;
  • Толщина 0,2 – 0,3мм;
  • Цвет от темно-синего до черного с антиотражающим покрытием или серый без покрытия;
  • Внешний вид – однородный.

Polikristallicheskij_pc


Поликристаллические фотоэлементы производятся с помощью равномерного направленного охлаждения емкости с расплавом кремния и бора. При этом в емкости формируются однонаправленные гомогенные кристаллы размером от нескольких миллиметров до нескольких сантиметров. Полученный блок поликристаллов обрабатывается так же, как и монокристаллическая заготовка.


Характеристики:


  • КПД от 13 до 16 процентов;
  • Форма квадратная;
  • Толщина 0,24 – 0,3мм;
  • Цвет синий с антиотражающим покрытием, серебристо-серый без покрытия;
  • Внешний вид – блок кристаллов разного направления, некоторые кристаллы четко видны на срезе.

cis_pc

Активным полупроводниковым материалом в CIS фотоэлементах является диселенид индия и меди. CIS компаунд часто легируется галлием и (или) серой. При производстве элемента стекло покрывается слоем молибдена проводящим электрический ток, для фотоэлемента этот слой будет катодом. Слой CIS компаунда в фотоэлементе обладает p-проводимостью и наносится на слой молибдена. Оксид цинка с примесью алюминия ZnO:Al используется в качестве прозрачного проводящего электричество анода. Этот слой имеет n-тип проводимости и в нем распылен вспомогательный слой оксида цинка i-ZnO. Промежуточный слой сульфида кадмия CdS используется для уменьшения потерь, связанных с несоответствием кристаллических решеток CIS и ZnO слоев.

cis_imgХарактеристики:

  • КПД от 9 до 11 процентов;
  • Форма элемента соответствует форме модуля;
  • Толщина модуля в незакаленном стекле от 2 до 4мм;
  • Цвет от темно-серого до черного;
  • Внешний вид – однородный.

CdTe_pc

Фотоэлементы с использования теллурида кадмия CdTe производятся на подложке с прозрачным TCO проводником, который изготавливается из оксида индия и олова ITO и используется как передний контакт. Эта подложка покрывается слоем селенида кадмия CdS с n-типом проводимости. После этого наносится абсорбирующий слой теллурида кадмия CdTe с p-типом проводимости. После этого модуль закрывается металлической токопроводящей пластиной.


CdTe_imgХарактеристики:


  • КПД 8,5%;
  • Форма элемента соответствует форме модуля;
  • Толщина модуля в незакаленном стекле – 3мм;
  • Цвет от зеркального темно-зеленого до черного;
  • Внешний вид – однородный.

Amorfny_kremnij_pc

Аморфный кремний в фотоэлементах не образует однородную структуру, но образуют беспорядочную сеть. Как результат, через открытые границы кристаллов происходит поглощение водорода. Этот гидрогенизированный аморфный кремний a-Si:H создается в реакторе плазмы из газовой фазы гидрида кремния SiH4. Легирование кремния производится смешиванием газов, содержащих легирующий элемент – гидрид бора B2H6 для p-проводимости и гидрид фосфора PH3для n-проводимости. В связи с небольшим расстоянием проникновения легирующих добавок в аморфный кремний, срок жизни носителей заряда не очень длинный, поэтому на слой кремния наносятся дополнительные слои с n- и p-проводимостями. В качестве переднего контакта используется прозрачный TCO проводник с оксидом олова SnO2, оксидом индия и олова ITO или оксидом цинка ZnO. В качестве заднего контакта используется металлическая токопроводящая пластина.


Amorfny_kremnij_imgХарактеристики:


  • КПД от 5 до 7 процентов;
  • Форма соответствует форме модуля, максимальный размер 2х3м;
  • Толщина элемента в незакаленном стекле от 1 до 3мм;
  • Цвет от коричневого до синего или фиолетового;
  • Внешний вид – однородный.


Скорее всего, вы заметили, что порядок знакомства с технологиями производства фотоэлементов был выбран не случайно – мы начали элементами с наибольшим КПД и закончил элементами с наименьшим КПД. КПД для фотоэлементов — это эффективность преобразования солнечной энергии в электрическую, это значит, что чем меньше КПД тем больше площади фотоэлементов нам необходимо для обеспечения той же мощности по сравнению с элементами у которых КПД имеет более высокое значение.

Теперь неплохо бы опровергнуть распространенное заблуждение о том, что поликристаллические фотомодули более эффективно преобразовывают солнечное излучение по сравнению с монокристаллическими. А тонкопленочные по сравнению с кристаллическими. На самом деле преобразование энергии прямого солнечного излучения монокристаллических элементов происходит с наибольшей эффективностью, у поликристаллических модулей это преобразование происходит с меньшей эффективностью в связи с разной ориентацией кристаллов в элементе. Рассеянное излучение кристаллические фотоэлементы преобразовывают с одинаковой эффективностью. Поэтому доля выработки от рассеянного излучения в поликристаллических панелях выше чем в монокристаллических, а, значит и влияние ориентации на выработку ниже. У тонкопленочных элементов в связи с большей степенью беспорядочности ориентации светочувствительных элементов выработка с рассеянной части излучения составляет основную долю выработки. Поэтому и принято говорить, что на выработку тонкопленочных модулей не влияет ориентация. Но энергию солнечного излучения, не зависимо от его формы, эффективнее всего преобразовывают монокристаллические модули потому что у них КПД выше.

Фотопанели из кристаллических фотоэлементов чаще всего используются в строительстве солнечных электростанций. Обычно, срок службы фотомодулей из кристаллических элементов составляет 25 лет. Через 25 лет мощность фотоэлементов составит 80% от текущей мощности. Обычно кристаллические фотопанели производятся с непрозрачной подложкой из PVB-пластика или тефлона, покрытием из стекла или прозрачного EVA-пластика, или стекла и алюминиевой рамой.

CIS – фотомодули имеют наибольший КПД как для тонкопленочных модулей. Но эти модули подвержены коррозии от токов утечки в связи с применением электролиза в их производстве, поэтому, когда мы устанавливаем станцию на CIS фотомодулях нам необходимо обеспечить полную потенциальную развязку с AC сетью с помощью установки трансформаторного инвертора или специального разделительного трансформатора и установить по дифференциальному автомату на каждую из линий, подключенных к инвертору. CdTe – фотомодули не подвержены коррозии. Но кадмий является токсичным элементом, вызывающим острые и хронические отравления. Поэтому использованные или испорченные CdTe – фотопанели подлежат обязательной утилизации, что удорожает эксплуатацию станции. Фотопанели из аморфного кремния не подвержены коррозии и не токсичны, но имеют очень низкий КПД и их активные элементы выгорают на солнце. Обычно в течении 6 – 12 месяцев после установки происходит снижение мощности, потом эти модули выходят на установившуюся мощность. Срок службы таких модулей составляет около 10 лет. Срок службы CIS и CdTe модулей такой же, как и у кристаллических.

Тонкопленочные фотомодули чаще всего применяются в фасадных системах и дизайнерских решениях. Скорее всего, в будущем тонкопленочные модули заменят кристаллические потому что их производство дешевле и менее энергоемко. Ведь никто не заинтересован в фотопанелях на производство которых тратится больше энергии чем они способны выработать за срок службы.


Принцип действия. 

 

 Принцип работы любых солнечных батарей такой: в качестве основного материала фотоэлектрического элемента служит кремний с примесями некоторых элементов, которые образуют кристалл с p-n-переходом. Таким образом, создается два слоя с различной проводимостью. На границе данных слоев образуется потенциальный барьер, который препятствует перемещению носителей электрического тока по всему полупроводнику. При попадании солнечного излучения на фотоэлемент, за счет поглощения фотонов создаются пары отрицательного и положительного заряда, понижающие потенциальный барьер, что приводит к свободному перемещению носителей по полупроводнику, в котором за счет этого наводится электродвижущая сила, являющаяся источником электрического тока. При увеличении светового потока увеличивается и фото ЭДС, следовательно, увеличивается и электрический ток.
Эффективность фотоэлементов из кремния по сравнению с другими материалами относительно высокая. КПД кремниевых пластин колеблется от 10 до 20%. От эффективности фотоэлементов зависит площадь солнечных батарей, рассчитанные на определенную нагрузку. Чем выше коэффициент полезного действия, тем меньше площадь, необходимая для генерирования электрического тока определенной мощности. Развитие полупроводниковой промышленности позволяет выпускать фотоэлектрические элементы на основе кремния с эффективностью до 40%.


В солнечной системе электроснабжения кроме солнечных батарей можно выделить такие основные устройства: аккумулятор, регулятор зарядки-разрядки и инвертор. Благодаря аккумулятору при отсутствии солнечного излучения потребитель может пользоваться электричеством. Регулятор зарядки-разрядки предохраняет аккумулятор от излишней зарядки и разрядки. То есть при достижении напряжения на аккумуляторе уровня напряжения отключения регулятор автоматически отключает нагрузку, а при максимальном уровне напряжения регулятор ограничивает ток зарядки. Инвертор служит для преобразования постоянного тока в переменный, который необходим для питания основной бытовой техники и освещения.

Для определения количества солнечных панелей, входящих в солнечную батарею, которых будет достаточно для обеспечения электричеством требуемой мощности, нужно провести расчет солнечной системы электроснабжения. Данный расчет начинается с определения суммарной мощности всех подключенных устройств, после чего определяется мощность инвертора и значение зарядной емкости аккумуляторов. Мощность и количество фотоэлементов определяется на основании, действующей в определенном регионе, значения солнечной радиации. Определив количество пиковых часов в сутки, когда уровень солнечной радиации не ниже 1000 Вт/м2, определяют вырабатываемую мощность одним фотоэлементом за данный период. Таким образом, зная необходимую суммарную мощность солнечной станции и мощность одного фотоэлемента, определяют количество солнечных панелей, входящих в батарею. Выше описан упрощенный принцип расчета солнечных батарей, в действительности необходимо учесть множество нюансов и влияющих факторов при расчете солнечной системы электроснабжения.

Солнечные батареи давно успешно применяются в развитых странах мира:
Одним из лидеров практического использования энергии Солнца стала Швейцария. Программа, получившая наименование «Солар-91″ и осуществляемая под лозунгом «За энергонезависимую Швейцарию!», вносит заметный вклад в решение экологических проблем и энергетическую независимость страны импортирующей сегодня более 70 процентов энергии. Здесь построено примерно 2600 гелиоустановок на кремниевых фотопреобразователях мощностью от 1 до 1000 кВт и солнечных коллекторных устройств для получения тепловой энергии.
В планах Швеции на 2020 год – полностью отказаться от УГВ топлива.
В Германии на протяжении нескольких лет функционирует государственная программа «100000 солнечных крыш».
В США запущен аналогичный проект – «Миллион солнечных крыш».

 

Основные достоинства солнечных батарей:

1. Экологическая чистота и абсолютная безопасность для здоровья.
2. Надежность. Солнце – это возобновляемый и неисчерпаемый источник.
3. Общедоступность. Возможность использования практически в любых местах.
4. Простота конструкции солнечных батарей и неприхотливость в их обслуживании.
5. Долгий срок службы батарей (до 50 лет). 

 

Расчет и выбор солнечных панелей.

Расчёт этих характеристик довольно прост, необходимо просуммировать мощность всех электроприборов и умножить их на время работы.

Допустим имеются следующие потребители : холодильник, телевизор, компьютер, осветительные приборы, зарядные устройства для телефонов, бытовые маломощные инструменты.

Среднего размера холодильник класса потребления А расходует в день примерно 680 Вт ( смотри паспорт изделия ), телевизор с технологией на жидких кристаллах с диагональю 54 см. потребляет примерно 50 Вт., при просмотре телевизора два часа в день это 100 Вт., компьютер ( ноутбук ) 60 Вт. при работе на компьютере три часа в день потребление составит 180 Вт., освещение три энергосберегающие лампы 15 Вт. четыре часа в день 15 х 4 х 4 = 240 Вт., зарядки трёх телефонов не более 10 Вт в день, Маломощная дрель или болгарка 5 минут непрерывной работы ( это достигается при работе около часа ) 50 Вт. Итого : 680 + 100 + 180 + 240 + 10 + 50 = 1260 Вт.

Этот расчёт сделан из тех обстоятельств, что мы серьёзно трудились и отдыхали целый день: три часа на компьютере, час с дрелью два часа смотрели телевизор и непрерывно болтали по трём телефонам.

Итак – мы собираемся потребить 1260 Вт. в сутки.

Можно ли уменьшить этот показатель ?

Можно, причём несколькими способами:

Способ 1 ( технологичный ).

Из расчёта видно, что самые большие потребители это холодильник и свет. Серьёзной экономии можно добиться если заменить энергосберегающие лампы на светодиодные ( LED ) , такие лампы потребляют 4 Вт. при светопотоке равному светопотоку излучаемого лампой накаливания в 90 Вт., то есть можно сэкономить 180 Вт. на освещении.

Холодильник можно обклеить сверху, снизу и с боков пенопластом, а также отодвинуть его от стены на 150 и более миллиметров, при этом его потребление снижается на 15 % т.е на 102 Ватта.

Общий итог нашей экономии 180 + 102 = 282 Вт.

Способ 2 – это физическая экономия электроэнергии, поменьше света и потребителей – для нас такой способ мало подходит, хотя разумная экономия всегда должна иметь место.

С учётом экономии нам нужно 1260 – 282 = 978 Вт. на день.

В ЛЕТНЕЕ время один Ватт энергии солнечной батареи производит ( в среднем ( с учётом пасмурных дней ) 11 Вт. ) в сутки. КПД системы ( зарядка аккумулятора и КПД инвертора ) около 50 %.

То есть мощность батареи должна быть не менее 978 / 11 * 2 = 177,8 Вт

 

 

 

Энергия ветра.

 

Ветрогенераторы все больше становятся популярными. Их используют не только как дополнительный источник электричества, а часто и как основной, благодаря надежности конструкции, удобству эксплуатации и привлекательного элемента экстерьера загородного дома. Популярны модели мощностью до 5кВт благодаря хорошему соотношению цена-эффективность-качество.
Ветроэнергетические комплексы из лучших отечественных и импортных компонентов, состоят из:

1) собственно, генераторов улучшенной конструкции (сам генератор, лопасти, контроллер заряда аккумуляторов) 

2) мощного инвертора 
3) мачты. 

4)долговечных тяговых или стационарных аккумуляторов.


Основные особенности ветряков:

Предлагаем Вашему вниманию обновлённый модельный ряд ветроэлектрoстанций, улучшенного качества, увеличенной энергоотдачи и надёжности. Их основные особенности:

1) комплектуются лопастями большого диаметра, что позволяет более эффективно использовать их на низких скоростях ветра. При этом, ометаемая лопастями площадь больше стандартной. Соответственно и вырабатываемая мощность на средних ветрах выше.
2) Низкая расчётная скорость ветра и существенно большая мощность на высоких скоростях ветра. Например, ветряк 1 кВт, при сильном ветре, может выдавать 1,5 кВт.
3) Современная высокотехнологичная конструкция - в электрогенераторы ветряных электростаницй установлены сильные неодимовые постоянные магниты, лопасти имеют профиль близкий к профилю самолётного крыла.
4) Все модели имеют токопередающие подшипники (поэтому силовой кабель идущий от ветряка, внутри мачты, никогда не закручивается).
5) Массовый серийный выпуск.


Несколько комментариев. 

Низкая расчётная скорость ветра (8– 10 м/с) означает, что при малых скоростях ветра (5 – 6 м/с), которые обычно и преобладают, такой ветряк, например расчётной мощностью 1 кВт, выдаст энергии больше, чем иная модель мощностью 2 – 3 кВт, но с расчётной скоростью ветра 12 м/с.

Использование тихоходного электрогенератора на постоянных магнитах, позволяет обходиться без повышающего редуктора, что минимизирует потери и шум, многократно увеличивает надёжность. Энерго-эффективность (коэффициент использования ветра) «самолётного» профиля лопасти примерно в 2 - 4 раза выше, чем если бы она имела плоский (наклонённой под углом к ветропотоку) профиль.

Серийный выпуск позволяет добиться высокой надёжности и низкой себестоимости продукции.
Для использования в индивидуальном хозяйстве, рекомендуются модели, мощностью не менее 0,5 кВт. Дело в том, что менее мощные ВЭУ при обычно преобладающих низких скоростях ветра, будут выдавать совсем малое количество энергии (её будет маловато даже с учётом того, что она накапливается в аккумуляторах). Малые ветряки (500 Вт) так же могут быть полезны в походных условиях и/или например, на яхте и др.

Что касается шумности, а так же инфра низкочастотных колебаний, которые распугивают мелких животных – этот недостаток относится к гигантским мегаваттным генераторам, лопасти которых создают инфра - низкочастотные колебания. Их, обычно, устанавливают вдали от населённых пунктов (пустыни, прибрежные зоны и т. п.).
Маломощные же модели, конечно, то же могут создавать небольшой шум при сильном ветре, однако его уровень не намного превышает естественный фон, создаваемый самим ветром. А на некоторых, этот лёгкий шелест действует даже успокаивающе, примерно так же, как бывает приятен шум дождя.

И наконец, данная конструкция ветряка действительно красива! Из практики известно, что многие состоятельные клиенты приобретают их не столько для получения электроэнергии (она у них и так есть) сколько для красоты.
У почти всех отечественных генераторов хвост сильно задран вверх (или опущен вниз), что весьма нарушает эстетику. В данных моделях штормовая защита обеспечивается без этого (хотя в этом случае, из хвост то же автоматически складывается).
Можно спорить, но ветряки с количеством лопастей менее/более 3-х всегда проигрывают внешне. И не только внешне. Не будем никого обижать, но согласно мировой статистике 95% всех выпускаемых в мире ветряков – трехлопастные с горизонтальной осью.

Кроме готовых телескопических мачт (см. далее) и недорогих стандартных мачт которые предлагаются нами к продаже, мы описали технологию самостоятельного изготовления мачты высотой 16 м и подъёма ветряка в разделе мачта. Там же: список комплектующих для изготовления и установки мачты, чертежи деталей, порядок сборки опорного узла мачты и др, строительство фундамента мачты, сборка мачты и подготовка траншеи, подъём мачты, монтаж. 

Обратите внимание, что сечение проводов электрокабеля, для уменьшения энергопотерь, должно быть по возможности побольше, причём, чем дальше находится ветряк от контроллера заряда с аккумуляторами, тем больше. Например, для 2 кВт модели, расположенной на расстоянии 30 м (с учётом длины мачты), рекомендуется кабель с сечением каждой жилы не менее 16 мм кв.

 

Также мы можем предложить ветрогенераторы вертикального типа, они более непрехотливы, не теряют мощьность при перемене направления ветра, имеют более низкую стартовую скорость ветра, низкую номинальную скорость ветра, способны выработать в несколько раз больше энергии по сравнению с горизонтальными, при тех же мощьностях. (подробно в описании.)

 

Теплонасосы (Геотермальная энергия.)


Тепловой насос не является чем-то сверхъестественным, а его принцип работы (видео) подчиняется основным законам термодинамики. Первая идея устройства теплового насоса принадлежит лорду Кельвину, который выдвинул ее еще в 1852 году, назвав данное устройство «умножителем тепла». В составе теплового насоса наиболее важная деталь – это компрессор, который сжимает низкопотенциальное тепло. В общем случае, происходит отбор теплоты из грунта или воды и передача его отапливаемому зданию. Кроме этого, в состав теплового насоса входят испаритель (теплообменник) и конденсатор. Отбор тепла происходит за счет специальных теплообменников, которые располагаются в земле или воде, имеющие постоянную температуру на протяжении всего года. Теплообменники представляют собой трубы, по которым течет специальная жидкость или газ. Компрессор отбирает тепло у данной жидкости и передает его конденсатору, который накапливает и передает тепло системе отопления. Охлажденная жидкость поступает обратно к испарителю, где нагревается до определенной температуры. Низкопотенциальной энергией обладает любое вещество, температура которого выше температуры абсолютного нуля (-273ºС), поэтому в качестве источников тепла для теплового насоса можно использовать любые объекты в виде грунта, водоема, скал, льда и т.п. Тепловые насосы, используемые зимой в качестве отопления, летом можно использовать для охлаждения или кондиционирования помещения, когда насос работает в обратном направлении, отбирая тепло из помещения и сбрасывая его в грунт или водоем.


 

 

При расчете затрат на отопление различными видами энергоносителей учитывался прогнозируемый рост стоимости энергоресурсов, исходя из утвержденной Правительством РФ динамике изменения тарифов до 2020 года. Сейчас затраты на отопление тепловыми насосами можно сравнить с затратами при отоплении природным газом. В 2020 году ситуация кардинально измениться, и стоимость отопления тепловыми насосами будет в 4 раза ниже, чем отопления природным газом.

Увеличение стоимости энергоресурсов:

  • жидкое/твердое топливо - 16% в год
  • электричество - 13% в год
  • природный газ - 30% в год

Стоимость RUB за 1 кВт/ч:

tablica

 

Стоимость отопления загородного дома, в год тепловым насосом и другими энергоносителями:

 

��������� 150

 

 Данные взяты из википедии.

 

Преимущества ТЕПЛОВОГО НАСОСА:

+ вы больше не будете зависеть от роста цен на газ;
+ не нужен проект по газу;
+ не нужно тянуть на участок газовые магистрали;
+ не нужна котельная с жесткими требованиями;
+ не нужны дымоходы;
+ отсутствие вредных выбросов;
+ экономия энергоресурсов (коммунальных платежей);
+ пожаро/взрывобезопасность;
+ один агрегат дает дешевое тепло зимой и холод летом;
+ оборудование долговечно и не требует особого внимания.

<span style="font-weight: bold

Наша компания предлагает к продаже следующие АКБ:

 1. Изготовленные по технологии AGM, герметизированные, срок службы 10 лет(резервный режим). Рекомендуются для резервного бесперебойного электропитания. По России доставляются транспортными компаниями. 

2. Изготовленные по гелевой технологии, герметизированные, срок службы 12 лет(резервный режим). Рекомендуются для резервного бесперебойного электропитания. По России доставляются транспортными компаниями. 

3. Тяговые аккумуляторы, малообслуживаемые, срок службы 10 лет(резервный режим). Из-за большого количества циклов глубокого (полного) разряда, рекомендуются к использованию при полной автономии от промышленных электросетей. Из-за жидкого электролита, по России не высылаются (транспортные компании не принимают).

4. Промышленные стационарные панцирные и намазные аккумуляторы типов OPzS, малообслуживаемые, срок службы 22 года и более и OPzV, герметизированные, срок службы более 20 лет(резервный режим) . Это самые долговечные и надёжные кислотные АКБ, какие существуют в мировом производстве. Они рекомендуются как для резервного бесперебойного питания, так и для полной автономии. 



Данные аккумуляторы обычно приобретаются большими партиями, крупными телекоммуникационными компаниями, и не продаются в розницу. Мы сделали их доступными частным пользователям и непрофильным компаниями.

 

5. Обычные автомобильные свинцово кислотные АКБ срок службы около 3 лет(резервный режим).
Сухозаряженные OPzS и герметизованные OPzV по России доставляются транспортными компаниями.

Описание возможностей и применения предлагаемых аккумуляторов, сравнение с другими маркими и типами АКБ – см. в статье ниже.


Введение. О ёмкости и напряжении аккумуляторов.

Коротко разберём распространённое мнение – «при последовательном соединении двух аккумуляторов (АКБ), их ёмкость не меняется, она остаётся такой же, как у одного аккумулятора, поэтому время автономной работы при таком соединении будет меньше».

Но как же закон сохранения энергии? Да, при последовательном соединении аккумуляторов, формально ёмкость считается как у одного аккумулятора, а напряжение удваивается (или утраивается, учетверяется и т.д., в зависимости от количества последовательно соединённых АКБ). При параллельном же соединении АКБ – ёмкость удваивается (утраивается и т.д.), а напряжение остаётся тем же.

 


Противоречия здесь нет. Когда люди говорят об аккумуляторе (обычно об автомобильном), то сообщают его ёмкость, но не уточняют вольтаж. Просто все привыкли, что аккумуляторы имеют напряжение 12 В, и подразумевается, что упоминать об этом глупо. Но вообще-то, ёмкость без указания вольтажа не имеет физического смысла. Существуют аккумуляторы самой разной ёмкости и на разное напряжение – на 2 В, и на 6 В, и на 12 В, и, редко, на 24В. Кроме того, любые одинаковые АКБ можно соединять последовательно, параллельно, или последовательно-параллельно одновременно.

Но стоит только указать после величины ёмкости, её вольтаж, как всё встаёт на свои места. Ведь ЭНЕРГОЁМКОСТЬ в любом случае, как бы мы не соединяли аккумуляторы, останется прежней.

Итак, если, например, два АКБ по 200 Ач*12 В , соединить последовательно, то получится энергоёмкость 200 Ач*24 В. А если эти же два АКБ соединить параллельно, то получится – 400 Ач*12 В. Проверим:

200 Ач*24 В = 480 = 400 Ач*12 В

Но для расчётов токов (обычно, номинальным током заряда считается ток 0,1*С, где С –величина равная ёмкости аккумулятора), С берут именно по цифре слева, т.е. в нашем примере, при последовательном соединении С = 200, а при параллельном С = 400.

Легко заметить, что и мощность зарядного устройства в обоих случаях будет одинаковой.

Для первого случая, зарядный ток будет 0,1*200 = 20 А, но при напряжении 24 В. Т.е. зарядная мощность, Р = 20 А*24 В = 480 Вт

Для второго случая, зарядный ток будет 0,1*400 = 40 А, но при напряжении 12 В. Т.е. зарядная мощность, Р = 40 А*12 В = 480 Вт

Если рассматривать одиночные аккумуляторы, то например один аккумулятор 600 Ач*2 В, по своей энергоёмкости соответствует одному аккумулятору 100 Ач*12 В.

Чтобы получить из этих аккумуляторов (600 Ач*2 В) большую аккумуляторную батарею, например, на 24 В, нужно соединить последовательно 12 шт таких АКБ. Общая итоговая ёмкость получится 600 Ач*24 В. Эта энергоёмкость, если сравнивать её с 12-и вольтовыми АКБ по 200 Ач (а такие применяются в грузовиках), соответствует 6-и штукам (три соединённых параллельно цепочки аккумуляторов, где каждая цепочка состоит из двух соединённых последовательно аккумуляторов):

(600 Ач*2В)*12 = 600 Ач*24 В = (200 Ач*24 В) + (200 Ач*24 В) + (200 Ач*24 В)

 

 

Обратите внимание – на всех рисунках специально показано, что если минус инвертора подключён к условно первому АКБ, то плюс – к последнему. Так его следует подключать, чтобы компенсировать сопротивление даже толстых медных проводов соединяющих аккумуляторы. Иначе, из-за их сопротивления, при огромных токах, «дальний» от выводов инвертора аккумулятор, окажется и не «дозаряжаем», и не «доразряжаем».

Итак, ёмкостью (читайте «энергоёмкостью») аккумулятора (объединённой группы аккумуляторов), называется количество электричества (т.е. мощности, равной току умноженного на НАПРЯЖЕНИЕ), которое аккумулятор отдает при разряде до наименьшего допустимого напряжения.

Чтобы аккумулятор служил долго, его нельзя разряжать более чем на 80%. Для 12-и вольтового АКБ, это соответствует напряжению на его клеммах примерно 11,5 В. Но тут важно каким током относительно емкости АКБ мы его разряжаем.

Чем больше сила разрядного тока, тем ниже напряжение, до которого может разряжаться аккумулятор. Это потому, что при быстром разряде большими токами относительно маленькой ёмкости аккумулятора, электролит не успевает перемешиваться и разряженный слой скапливается вокруг пластин. Напряжение АКБ падает и нагрузку снимают. Однако, спустя несколько десятков минут, электролит перемешивается и ёмкость (и, соответственно, напряжение аккумулятора) повышаются.

Если же разряжать малым током относительно ёмкости, то можно вычерпать всю энергию, что плохо для долговечности АКБ. Всегда надо оставлять не менее 20% ёмкости. Подробнее об этом далее.

Отметим, что во время заряда, зарядное устройство постепенно повышает напряжение на АКБ, а затем, после снятия заряда, напряжение уменьшается, возвращаясь к спокойному состоянию (так, на 12-и вольтовом аккумуляторе, в зависимости от типа АКБ, оно обычно растёт до 14,1 – 14,5 В, а после снятия заряда, даже без нагрузки, в течении получаса возвращается к 12,5 – 12,8 В).


О типах, технологиях и назначении аккумуляторов

Далее дадим краткое пояснение, что такое аккумуляторы гелевые, типа AGM, панцирные и др. Экзотические типы аккумуляторов (литий - ионные, щелочные и др.) пока не выдерживают конкуренции с кислотными по цене и/или КПД, поэтому рассматривать их мы не будем.

Стартерные автомобильные – самые слабые и недолговечные аккумуляторы. Требования к ним небольшие, поэтому они делаются по простейшей технологии (штампованные тонкие свинцовые решётчатые пластины). Бывают обслуживаемые (требуют проверки уровня электролита и доливки дистиллированной воды, обычно раз в год) и не обслуживаемые герметизированные (в случае перезаряда большими токами или напряжениями, если вода выпарится через предохранительный клапан, долить её нельзя и АКБ выбрасываются). Обслуживаемые автомобильные АКБ выдерживают порядка 100 циклов разрядов на 80%, герметизированные автомобильные – около 200.

AGM – кислотные герметизированные аккумуляторы, в которых электролит адсорбирован стекломатами. Выдерживают примерно 250 – 400 циклов разрядов на 80%. Технология изготовления пластин обычная, поэтому и количество циклов мало. Чувствительны к перезарядам.

Гелевые – кислотные герметизированные аккумуляторы, в которых электролит загущён с помощью селикогеля. Выдерживают примерно 350 – 450 циклов разрядов на 80%. Технология изготовления пластин обычная, поэтому и количество циклов относительно мало. Более чувствительны к перезарядам (может выпариться вода). Необходимо обеспечить точное соответствие зарядных токов и напряжений паспортным (для них напряжение конца заряда обычно ниже, чем у других АКБ).

 

Панцирные – это широкий класс высококачественных кислотных аккумуляторов, построенных на решетчатой структуре пластин с трубчатыми электродами. Так называемые трубчатые положительные плиты, в которых каждый компонент заключен в полимерный кислотопроницаемый стержень, изготавливаются из сплава химически чистого свинца (чистота металла не менее 99,9%) и 2% сурьмы. Данная технология применяется во всех промышленных типах АКБ (тяговых, стационарных, солнечных, как малообслуживаемых, так и герметизированных) с большим сроком службы. Герметизированные гелевые АКБ, сделанные на основе панцирных пластин, выдерживают порядка 900 - 1000 циклов разрядов на 80%. Кислотные малообслуживаемые - около 1500 циклов.

Так же, часто АКБ делят по сфере применения - стартерные (о них говорилось в начале раздела), тяговые, стационарные, солнечные.

Тяговые – предназначены для использования в электроподъемниках и другой электротехнике. Обычно, общая аккумуляторная батарея на нужное напряжение, составляется из батарей на 2 В большой ёмкости каждая (200 – 1200 Ач). Настоящие тяговые АКБ, сделаны по панцирной технологии. Стандартная маркировка – малообслуживаемые PzS (H), герметизированные гелевые – PzV.

Стационарные – применяют на промышленных объектах (там необходима повышенная долговечность и надёжность). Обычно, общая аккумуляторная батарея на нужное напряжение, составляется из батарей на 2 В. Они большой ёмкости – одиночные аккумуляторы бывают от 200 до 1200 Ач. Все используют панцирную технологию. Выпускаются как малообслуживаемые (в прозрачном корпусе OPzS), так и герметизированные гелевые (OPzV). У них самая большая надёжность и самый большой срок службы из всех типов аккумуляторов.

Солнечные – обычно модификация тяговых или стационарных аккумуляторов. Эти батареи выпускаются как на 2 В, так и на 6 или 12 В. Обычно имеют панцирную технологию. Во многих случаях это стационарные или тяговые АКБ с другой маркировкой/названием (это маркетинговый ход).

Отметим, что долговечность и надёжность всех 12-и вольтовых АКБ ниже, чем у аналогичного типа аккумуляторов, но на 2 В. Это связано с технологией изготовления. Ведь 12-и вольтовые АКБ состоят из 2 В аккумуляторов малой ёмкости, соединённых в общий корпус. Т.е., любой одиночный аккумулятор 12В состоит из шести встроенных маленьких аккумуляторов по 2 В. Поэтому, для повышения надёжности и долговечности, рекомендуем набирать необходимую ёмкость сразу из 2-х вольтовых банок аккумуляторов большой ёмкости.
Основные параметры аккумуляторов и цены

В таблице далее, указаны свойства и параметры аккумуляторов разных типов. Рассчитана как цена покупки оптимальной (для дома) общей ёмкости аккумуляторов 400 Ач*24 В, так и цена 1 цикла разряда/заряда подобной ёмкости, длительность эксплуатации в автономном и в буферном режиме и т.д. Данные этой таблицы позволяют сделать лучший выбор для конкретных условий эксплуатации, с учётом отношения цены/качества и возможностей.

 


схема 2
 

Внимательно изучив сравнительную таблицу можно сделать много полезных выводов. Разберём два варианта эксплуатации аккумуляторов для электроснабжения – полностью автономное электроснабжение (промышленного электричества на объекте нет вообще) и резервное (т.е. когда сеть 220 В есть, но иногда пропадает).

1.Для эксплуатации в условиях полного автономного электроснабжения (а это полные или почти полные разряды на 80%),

наиболее выгодны литий-железо фосфатные АКБ и кислотные тяговые панцирные АКБ Микроарт. Применение в тяговых аккумуляторах особо чистого электролита (ОСЧ) и рекуператоров водорода (RP-500 и RP-1000) существенно повысило их долговечность, оставив цены демократичными. Стоимость одного цикла их заряда/разряда (для суммарной ёмкости батареи 400 Ач×24В, набранной из нескольких аккумуляторов), при условии разрядов на 80% (подобных разрядов эти АКБ выдерживают 1500), составляет рекордные 35 - 40 руб (см. таблицу).

Примерно столько же стоят циклы заряда/разряда при автономной эксплуатации (частые разряды на 80%) у литий-железо фосфатных АКБ (5000 циклов, 40 руб за цикл). Причём, что особенно важно, у них очень хорошие параметры для полной автономии – они не боятся долго находиться в разряженном состоянии, не критичны к периодическим недозарядам, имеют КПД 94%. Главный их минус - цена первичных вложений (посмотрите в таблице графу первичные вложения). Так же они плохо переносят заряд при отрицательных температурах, и требуют установки BMS (Battery Manegement System). Реализация заряда таких аккумуляторов существенно сложнее, чем любых других, и пока мало какие инверторы и солнечные контроллеры способны на это (инверторМАП и в солнечный контроллер ECO Энергия MPPT.Pro это умеют). Помимо специального алгоритма, для их нормального заряда и функционирования, как уже говорилось, необходимы BMS. Это система управления распределения энергии между батареями и контроля состоянием каждой из них, причём с обратной связью с заряжающим инвертором и/или с солнечным контроллером.


 

Вообще, число циклов при определённых степенях разрядов, считается до того момента, когда аккумулятор далее нельзя эксплуатировать. Согласно ГОСТ Р МЭК 60896-2-99 на свинцово-кислотные стационарные батареи, аккумулятор нельзя далее эксплуатировать, если его ёмкость уменьшилась на 20%, т.е. стала 80% от исходного значения. Тем не менее, при бытовом применении, никто не мешает использовать их и далее.

Помещение для аккумуляторов, желательно относительно тёплое, т.к. доступная ёмкость падает при понижении температуры (например, при -20С, доступная ёмкость становится в 2 раза меньше, чем при +25С).

Но и повышенная температура недопустима – почти любой аккумулятор, при +35С стареет в 1,5 - 2 раза быстрее. Поэтому крайне не рекомендуется устанавливать их на чердаке. Идеальное по температуре место – подвал с вытяжкой или проветриваемое техническое подполье. Подойдёт и подсобное помещение, прихожая, где не бывает высоких температур.
Тем, для кого вышеперечисленные минусы (обслуживание, проветривание) являются существенными, стоит задуматься о приобретении герметизированных аккумуляторов, но не обычных, а изготовленных по панцирной технологии, т.е. OPzV.

 

Срок их службы при полной автономии может составлять до 12 лет.

 

Но для автономии, всё же лучше обслуживаемые АКБ. Дело в том, что, например, гелевые АКБ достаточно «нежные». Заряд большим током, или перезаряд напряжением выше 14,1 (28,2) В, что вероятно при полной автономии, например от ветрогенератора или др., может быстро выпарить из них воду (через предохранительный клапан) и они невосстановимо потеряют ёмкость. А ведь залить воду в герметизированные АКБ обратно, уже невозможно. Постоянный недозаряд тоже губителен…

 

И всё же, при автономном использовании, малообслуживаемые OPzS или PzSH, будут лучше.

Ведь при полной автономии, всё равно надо за всем следить - и за бензогенератором (менять масло, заливать бензин), и за зарядом АКБ (не желательно оставлять их разряженными более 12 часов), и за чистотой солнечных панелей. И обслуживать ветряки надо не менее раза в год (если они есть). На этом фоне проверка уровня электролита раз в год, или, тем более, раз в 3 года, с возможной доливкой дистиллированной воды – не критична.

Лучше раз в 3 года «автономного полёта» долить воды, чем выкинуть через первые же 3 года (а то и через год) комплект каких-нибудь гелевых аккумуляторов, не правда ли?

Вывод: в условиях автономного электроснабжения, будет большой ошибкой покупать стартерные, или обычные гелевые, или сделанные по технологии AGM аккумуляторы. Если финансы ограничены, то лучше приобрести тяговые АКБ или PzSH. Если средств достаточно, то наилучшее решение - OPzS. Если предъявляются жёсткие требования к отсутствию вентиляции – герметизированные OPzV, или PzV. Это хоть и гелевые АКБ, однако, сделанные по панцирной технологии. Ускоренный заряд повышенным током от миниэлектростанции, в случае герметизированных АКБ, применять не желательно.

2. Для эксплуатации же в условиях наличия сетевого 220В и его периодического пропадания (резервный или буферный режим, редкие малые разряды) хорошо подходят именно необслуживаемые герметизированные АКБ. На первый план тут выходит не цена цикла, а общая долговечность и отсутствие обслуживания. Ведь в подобных условиях, люди, как правило, особо за системой не следят, и тем более не следят за уровнем электролита в АКБ. Немаловажно и отсутствие требований к проветриванию.

Количество разрядов в условиях резерва обычно малое, а сам разряд, до появления электричества, чаще всего происходит на 30 – 50%.

 

В условиях резерва обычно нет надобности в бензо/дизель/газо электрогенераторе, т.к. срок автономии достигает нескольких суток (при условии установки достаточной ёмкости, не менее чем 400Ач*24В), а обслуживание и эксплуатация генератора весьма затратны и некомфортны. В случае же реального отсутствия электричества более недели, электрогенератор можно купить по необходимости, времени будет достаточно.

Вывод: в условиях резервного (аварийного или буферного) электроснабжения, подойдут практически любые аккумуляторы. Если финансы ограничены, то оптимальны герметизированные по технологии AGM. Немного лучше, но и дороже геливые Haze, очень хороши панцирные.

Если средств достаточно, то дешевле по цене цикла и существенно более долговечны герметизированные OPzV.

Если же не предъявляются особо жёсткие требования к присутствию вентиляции – то очень хорошее и самое долговечное решение (22 года и более) - прозрачные OPzS. Они особенно подойдут людям, которые желают быть всегда в курсе «здоровья» своего резерва, а следовательно и аккумуляторов (следить за ними позволяет прозрачный корпус), и которых не смущает необходимость раз в 3 года долить воды.

 

Что касается вентиляции, то тут требования для OPzS не высоки: объем свежего воздуха (Vсвеж) должен составлять 50% от V, где V=0,07*Iзар*n. Здесь Iзар - наибольший зарядный ток, А; n - количество элементов аккумуляторной батареи), м3/ч.

Для нашего стандарта 400 Ач*24В, при токе заряда 0,1С=40А, Vсвеж=0,5*(0,07*40*12)=17 м3/ч

Однако, в соответствии со СНиП 2.08.01-89, вентиляция должна присутствовать во всех помещениях, всех зданий. Например, в ванной и туалете по 25 м3/ч, кухне 60 м3/ч. Для обычных помещений мощность естественной или электрической вытяжки должна составлять 3 м3/ч на 1м3 помещения.

Это означает, что зачастую, если дом построен правильно, устанавливая аккумуляторы OPzS, можно обойтись и без дополнительной вентиляции. При наличии сети, торопиться с зарядом нет смысла и, значит, зарядный ток можно ещё в 2 раза уменьшить, до 0,05С.


О проблемах, влияющих на реальный срок эксплуатации аккумуляторов .

Несмотря на множество технологических решений, внедренных в свинцово-кислотные аккумуляторные батареи за 150 лет с момента изобретения технологии химической аккумуляции, срок службы АКБ до сих пор во многом зависит от эксплуатационной нагрузки. Рассмотрим их по порядку:

1. Первым определяющим фактором была и остается степень разрядки источника тока. Свинцовые аккумуляторы не терпят хранения в разряженном состоянии. Кроме того, при падении заряда ниже 20% активизируется процесс образования нерастворимых соединений серы, которые, в первую очередь сказываются на емкости АКБ. Помимо этого, реакция сульфатации способствуют выделению влаги, которая обеспечивает постоянное снижение концентрации кислоты. Если же аккумулятор некоторое время будет находиться в состоянии глубокой разрядки, начнется необратимый процесс образования сульфатов и, соответственно, необратимого снижения реальной емкости АКБ относительно паспортной.

Обратите внимание, что для большой ёмкости, например, 400Ач*24В, обычная нагрузка менее 500Вт (а это и есть обычное использование), разряжая АКБ до 11,5 (23) В разряжает его примерно на 80%.

Если бы нагрузка, относительно ёмкости АКБ, была бы большой, например, для вышеуказанного случая порядка 2 кВт, то из-за инертности перемешивания электролита, напряжение на АКБ упало бы до 11,5 (23) В намного раньше. И если при этом, инвертор отключит потребление, то спустя некоторый срок электролит перемешается, и напряжение на АКБ поднимется само. Т.е. расход ёмкости АКБ, в этом случае, будет не 80%, а гораздо меньше, что не плохо. Только вот при обычном использовании, основным потребителем является холодильник. А его средняя мощность потребления около 100 Вт.

Поэтому, чтобы гарантированно не разряжать АКБ ниже, чем на 20%-30% надо установить отключение инвертором потребления при напряжении 11,7 (23,4) В - см. таблицу ниже.

Однако, помните, что если общая ёмкость АКБ будет маленькой относительно нагрузки (например, в несколько кВт), то напряжение на АКБ может в этом случае очень быстро просесть до 11,7 (23,4) В и инвертор отключит генерацию. Чтобы такого не произошло, необходимо устанавливать емкость не менее 400Ач*24В, а ещё лучше – в 1,5 раза больше.

Нахождение АКБ в разряженном состоянии (более чем на 80%) в течении более чем 12 часов недопустимо.

 

 

 

2. Другим определяющим фактором для времени жизни АКБ, можно назвать температуру электролита. В случае обычных кислотных аккумуляторов, эксплуатация при повышенной на 10 градусов температуре ведет к сокращению срока службы вдвое (как отмечалось ранее, лучшие АКБ не столь чувствительны к этому параметру). Хоть в инверторе МАП «Энергия» и есть внешний температурный датчик (его следует приклеить скотчем к АКБ), позволяющий делать автоматическую компенсацию зарядных напряжений, это помогает лишь отчасти. Ограничения на использование в жаркую погоду пока никто не отменял. Поэтому, нельзя располагать АКБ на нагревающихся чердаках, нежелательно и в одном помещении с миниэлектростанцией, т.к. последняя сильно его разогревает. Идеальное место – подвал, техподполье, или подсобка/коридор с северной стороны здания.

3. Для долголетия аккумуляторов, необходим и полный, 100% заряд, что затруднительно обеспечить, если сетевого 220В нет вообще и если для заряда использовать только мини электростанцию.

 

Лучший выход из положения для автономных систем – установить солнечные панели и/или ветрогенератор. Ведь почти всё необходимое для их эксплуатации уже имеется (АКБ и инвертор и резервная миниэлектростация). Солнечные панели и/или ветрогенератор позволят в определённые моменты времени (когда нагрузка мала, а солнце/ветроресурсы имеются) зарядить АКБ на 100%. Пусть это будет даже не каждый день, но и раз в неделю подобный 100% заряд будет полезен. При достаточной их мощности, система сможет выдавать электричество практически вообще без включения бензогенератора.

Другой, компромиссный вариант, это хотя бы раз месяц проводить 13 часовую, 100% зарядку от бензо/дизель/газо генератора (при необходимости понижая в инверторе зарядные токи), а в остальное время ограничиваться 80% зарядом.

Можно конечно поставить и два комплекта АКБ, подзаряжая внешним зарядным устройством, подключённым к выходу 220 В от инвертора, отдыхающий комплект АКБ. Однако, это решение по стоимости сопоставимо с первым вариантом, и менее разумно - дополнительные АКБ, в отличии от солнечных панелей и ветрогенератора, не используются, а «отдыхают». К тому же, аккумуляторы расходный, относительно менее долговечный материал.

Здесь отметим, что аккумуляторам вреден и постоянный длительный перезаряд (заряд повышенными токами, и высокое напряжение конца заряда, и высокое напряжение буферного поддержания). Поэтому, эти параметры устанавливают в соответствии с паспортом АКБ, причем в случае наличия сети, зарядные токи, обычно устанавливают по минимальной границе.

4. Спустя несколько лет после начала эксплуатации АКБ (а в зависимости от качества аккумуляторов, бывает и через год-другой), может возникнуть разбалансировка аккумуляторов. Это явление проявляется в том, что допустим в цепочке из двух последовательно соединённых АКБ, на одном аккумуляторе устанавливается напряжение чуть ниже, а на другом – чуть выше. В итоге, общее напряжение будет нормальным и инвертор проводит заряд до положенных значений напряжений. Тем не менее, один АКБ окажется недозаряжен, а другой перезаряжен.

Поэтому, раз в год, желательно измерять цифровым тестером напряжения на каждом АКБ. В случае их разбалансировки, проводят уравнительный заряд каждого АКБ отдельно. Если же АКБ герметизированные (в этом случае уравнительный заряд запрещён), то проводят восстановительный заряд/разряд и полный заряд каждого АКБ.
Или, если аккумуляторов несколько и соединены они последовательно-параллельно, можно попробовать поменять их местами. Так же, при последовательно-параллельном соединении, желательно объединить перемычкой средние точки у аккумуляторов (например, для сборки из 4-х АКБ на 24 В, средней точкой является 12 В).

О восстановлении посаженных АКБ (восстановительный заряд/разряд)

Лучшим способом заряда сильно разряженной батареи является ее длительный заряд очень маленькими токами (0,01 - 0,05С).

Затем восстановительный разряд очень большим током (0,3 - 0,5 С) – такой ток в какой-то мере, «разрывает» слой окисла с пластин АКБ. И так, следует повторить циклы 5 - 10 раз. Но если сульфатация превысила некоторый предел, восстановление ёмкости АКБ станет невозможным.

Ориентировочное время работы аккумуляторов на различные нагрузки:

 

 

Время автономной работы зависит только от ёмкости подключённых аккумуляторов и мощности нагрузки. В таблице, оно указано. Но необходимо учитывать, что если не использовать электрообогреватели (а их использование от автономных источников не рекомендуется), в реальных условиях такой нагрузки в среднем не будет никогда.

Например, в стандартном доме к автономному источнику обычно подключают освещение, телевизор, холодильник, насос водоснабжения и отопительный котёл на жидком топливе. Надо рассмотреть два аспекта – а) необходимую мощность для обеспечения пусковых мощностей всего оборудования; б) среднюю потребляемую мощность в сутки.

Пусковая мощность зависит от конкретных устройств. Но можно прикинуть ориентировочно. Пуск освещения – 500 Вт, телевизора 150 Вт, холодильника 1,5 кВт, насос (сильно зависит от его мощности и глубины расположения) 5 кВт, котёл 1 кВт. Итого, порядка 8 кВт. Следовательно, по этому параметру, для описанного случая гарантированно сработает МАП "Энергия" SIN 9,0 кВт (скорее всего, справится и МАП SIN 6 кВт).

Средняя же потребляемая мощность будет всего порядка 500 Вт около 6 часов в сутки. Это обусловлено тем, что освещение и телевизор обычно включаются по вечерам, насос включается редко и на маленький срок (при потреблении его мощность 500 – 1500 Вт), холодильник потребляет 150 Вт и включается на 15 минут в час. Котёл потребляет порядка 200 Вт и тоже работает в прерывистом режиме.

Теперь легко оценить время реальной автономной работы. Смотрим по таблице – там написано, что например от 6 шт АКБ по 190 АЧ (или набранная такая же энергоёмкость из любых аккумуляторов 570 Ач*24 В, или 285Ач*48 В, или 1140 Ач*12 В), при нагрузке 500 Вт, будут работать 25ч 30м. Но так как, ориентировочно, такое потребление будет лишь 6 часов в сутки, то 25,5/6=4 суток. Таким образом, вышеперечисленная нагрузка, от 6-и АКБ по 190 АЧ, будет обеспечена автономным питанием примерно в течении 4-х суток.

Для определения времени работы неважно как соединены между собой аккумуляторы - последовательно, параллельно или последовательно и параллельно.

Напоминаем так же, что аккумуляторы обладают свойством остаточной ёмкости. Т. е., например, если используя аккумулятор 90 Ач*12 В вы работали газонокосилкой мощностью 1 кВт в течении 45 мин. после чего МАП выключил 220 В (т.к. напряжение на АКБ просело ниже 11 В) – уменьшите нагрузку до 500 Вт (подключите, к примеру, электролобзик) и работайте ещё столько же! Затем можно подключить 300 Вт-ную дрель, а потом 130 Вт-ный краскопульт, далее 60 Вт-ный паяльник и, наконец, 30 Вт-ную лампочку. Однако в двух последних случаях, нагрузка буде потреблять малый относительно ёмкости АКБ ток, и вы «вычерпаете» около 100% от максимальной ёмкости аккумулятора (если конечно, напряжение отключения потребления в инверторе не установлено на 11,5 В или выше). А «вычёрпывание» 100% не рекомендуется, т. к. ресурс аккумулятора, в этом случае, сокращается. Во всём нужно знать меру…

Из вышеприведенного примера совсем не следует что эти (и другие) нагрузки нельзя включить все сразу.

***

Теперь, обладая багажом специальных знаний, Вы сможете сделать осознанный выбор. Защититься от последствий природных катастроф и техногенных аварий, можно обеспечив себя резервным и/или автономным электропитанием. Сегодняшний мир, это мир со скудеющими ресурсами. Помните - «удача любит подготовленных»!